Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata
نویسندگان
چکیده
Problem statement: The area and complexity are the major issues in circuit design. Here, we propose different types of adder designs based on Quantum dot Cellular Automata (QCA) that reduces number of QCA cells and area compare to previous designs. The quantum dot cellular automata is a novel computing paradigm in nanotechnology that can implement digital circuits with faster speed, smaller size and low power consumption. By taking the advantages of QCA we are able to design interesting computational architectures. The QCA cell is a basic building block of nanotechnology that can be used to make gates, wires and memories. The basic logic circuits used in this technology are the inverter and the Majority Gate (MG), using this other logical circuits can be designed. Approach: In this paper, the adders such as half, full and serial bit were designed and analyzed. These structures were designed with minimum number of cells by using cell minimization techniques. The techniques are (1) using two cells inverter and (2) suitable arrangement of cells without overlapping of neighboring cells. The proposed method can be used to minimize area and complexity. Results: These circuits were designed by majority gate and implemented by QCA cells. Then, they simulated using QCA Designer. The simulated results were verified according to the truth table. Conclusion: The performance analyses of those circuits are compared according to complexity, area and number of clock cycles and are also compared with previous designs.
منابع مشابه
Exploring and Exploiting Quantum-Dot Cellular Automata
The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presente...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملNovel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology
Quantum-dot cellular automaton (QCA) is a novel nanotechnology with a very different computational method in compared with CMOS, whereas placement of electrons in cells indicates digital information. This nanotechnology with specifications such as fast speed, high parallel processing, small area, low power consumption and higher switching frequency becomes a promising candidate for CMOS tec...
متن کاملA Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata
The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملNovel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology
The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...
متن کامل